Abstract

The objectives of this study are to analyze the behavior of a pipe under different valve open and closure times and to predict water hammer-induced transient maximum pressure, deflection and frequency of vibration in a fluid filled pipe. The model that integrated a classical formulation of water hammer problem and beam vibration equation was developed and a numerical simulation including frictional losses has been carried out. The MacCormak and Runge-Kutta methods were used to solve governing partial differential equations in order to investigate water hammer induced vibration of a fluid filled pipe. The results show that fluid flow rate does not change the vibration frequency of pipe. The peak wave pressures, maximum pipe deflections at various valve open and closure times, and the frequencies of vibration with variation of fluid speed and pipe geometrical configuration are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call