Abstract

Water management by the impoundment of reservoirs has been found to influence evapotranspiration not only locally but also at the basin scale. Highly regulated hydrological basins generally show the effect of a net increase in evapotranspiration accompanying the successive impoundment of reservoirs. However, understanding and isolating the effect from a particular single impounded reservoir remains a challenge due to the lack of long-term observation data required and the existence of many other drivers present at the basin scale. Focusing on the hydrological basin having the largest hydropower potential in China, we isolated in time and space and quantified the effects of a single impounded reservoir on evapotranspiration and the evaporative ratio (i.e., the ratio of actual evapotranspiration to precipitation) before and after the construction of the Ertan Dam in 1998. We find that the dam has increased evapotranspiration in the smallest subbasin by 46±15 mm/yr and the evaporative ratio by 0.05±0.015, from the period before impoundment (1983-1997) to that after impoundment (2000-2012). This increase is found only within the smallest differential subbasin holding the impounded reservoir and cannot be explained by other changes in land use or vegetation. We use this result from our hydrological basin-constrained approach to calculate the water footprint of the hydroelectric project as 16.5 m3/GJ, which accounts for additional hydroclimatic effects of the impoundment of the reservoir beyond the water surface. Hence, this study finds that when runoff data is available, the water consumption and the water footprint of hydropower projects can be calculated by water mass balance at the scale of their hydrological basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.