Abstract
The vertical flow of water in cover soils is simulated using published analytical and finite-element methods. The two methods gave virtually identical pressure head and water content profiles during steady infiltration of water in a multilayer soil cover and transient infiltration in a single-layer cover. The finite-element model was then used to simulate flow in two laboratory columns packed with multilayer soils and subjected to downward drainage and conditions of evaporation and no evaporation. The model adequately predicted transient pressure heads and water contents for the first 7.5 h of drainage in a till-sand layer without evaporation. Predictions at times equal to and greater than 3 days were not as good, probably due to the formation of discontinuous water pockets in the draining sand around the residual water content, which apparently produced locked-in or static nonequilibrium pressures. These pressures are not captured by existing methods used for estimating the unsaturated hydraulic conductivity-pressure function of soils. Further modeling showed that at times greater than 8 days, the flux from the column with evaporation was all in the vapor phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.