Abstract

Nearly frictionless water transport makes carbon nanotubes promising materials for use as conduits in nanofluidic applications. Here, we conduct molecular dynamics simulations of water flow within amorphous silica nanopores coated by a (39,39) single-walled carbon nanotube (SWCNT). Our atomistic models describe the interaction between water and pore walls based on two possible scenarios, translucency and opacity to wetting of a SWCNT. Simulation results indicate that the SWCNT coating enhances water flow through silica pores ca. 10 times compared to predictions from the classical Hagen–Poiseuille relation. By varying the strength of the water–pore interaction, we study the relationship between surface wettability and hydrodynamic slippage. We observe an increase in the slip length for higher values of water contact angle. Moreover, cases with SWCNT opacity and translucency to wetting display a substantial difference in the computed slippage, showing that the water contact angle is not the only factor that...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.