Abstract
In this paper, a simple and elegant geometric water-filling (GWF) approach is proposed to solve the unweighted and weighted radio resource allocation problems. Unlike the conventional water-filling (CWF) algorithm, we eliminate the step to find the water level through solving a non-linear system from the Karush-Kuhn-Tucker conditions of the target problem. The proposed GWF requires less computation than the CWF algorithm, under the same memory requirement and sorted parameters. Furthermore, the proposed GWF avoids complicated derivation, such as derivative or gradient operations in conventional optimization methods, while provides insights to the problems and the exact solutions to the target problems. Most importantly, the GWF can be extended to solve a generalized form of radio resource allocation problem with more stringent constraints: (weighted) optimization problem with individual peak power constraints (GWFPP), and to include (weighted) group bounded power constraints (GWFGBP). On the other side, the CWF cannot solve these two general forms of the RRA problems, due to the difficulty to solve the non-linear system with multiple non-linear equations and inequalities in multiple dual variables. Optimality of the proposed water-filling solution is strictly proved for each of the proposed algorithms. Furthermore, numerical results show that the proposed approach is effective, efficient, easy to follow and insight-seeing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.