Abstract

Archer fish jumping for prey capture are capable of achieving accelerations that can reach 12 times gravitational from a stationary start at the free surface. This behavior is associated with nontrivial production of hydrodynamic thrust. In this work, we numerically investigate the hydrodynamic and aerodynamic performance of a jumping smallscale archer fish (Toxotes microlepis) to elucidate the propulsive mechanisms that contribute to the rapid acceleration and the considerable jump accuracy. We conduct high-fidelity, two-phase flow, large-eddy simulation (LES) of an anatomically realistic archer fish using detailed jump kinematics in water, through the water/air interface, and in air. The complex fish body kinematics are reconstructed using high-speed imaging. The LES results during the water phase of the jump are compared with particle image velocimetry measurements of a live jumping archer fish, and excellent agreement is found. The numerical simulations further enable detailed analysis of the flow dynamics and elucidate for the first time the dynamics of the coherent vortical structures in both the water and air phases. In particular, the pectoral fins are shown to contribute to the initial spike in acceleration before water exit and to enhance the overall jumping performance of the fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.