Abstract

In this paper, hierarchical CuO/MnO2 composite hollow nanospheres have been successfully fabricated by water evaporation-induced self-assembly through a redox transformation reaction between Cu2O nanospheres and KMnO4 solution at 120[Formula: see text]C for 6[Formula: see text]h, followed by removing the residual Cu2O cores with ammonia hydroxide solution. The outstanding feature of this method is that the reaction system is in a dynamic environment due to the evaporation of the solvent water, which benefits the self-assembly of nanostructures to form hierarchical structures. Both Kirkendall effect and Ostwald ripening mechanism are suggested to be responsible for the formation of the hierarchical CuO/MnO2 nanocomposites according to the characterization results. The electrochemical properties of the products were studied, and the results show that the hierarchical CuO/MnO2 hollow nanospheres exhibit high capacity and good rate performance (a stable capacity of about 480[Formula: see text]mAh[Formula: see text]g[Formula: see text] after 80 cycles of variable charging rate), which is probably attributed to the hierarchical hollow nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call