Abstract

As a 100% atom-economy process, direct oxidation of methane into methanol remains as a grand challenge due to the dilemma between activation of methane and over-oxidation of methanol. Here, we report that water enabled mild oxidation of methane into methanol with >99% selectivity over Au single atoms on black phosphorus (Au1/BP) nanosheets under light irradiation. The mass activity of Au1/BP nanosheets reached 113.5 μmol gcatal−1 in water pressured with 33 bar of mixed gas (CH4:O2 = 10:1) at 90 °C under light irradiation (1.2 W), while the activation energy was 43.4 kJ mol−1. Mechanistic studies revealed that water assisted the activation of O2 to generate reactive hydroxyl groups and •OH radicals under light irradiation. Hydroxyl groups reacted with methane at Au single atoms to form water and CH3* species, followed by oxidation of CH3* via •OH radicals into methanol. Considering the recycling of water during the whole process, we can also regard water as a catalyst.

Highlights

  • As a 100% atom-economy process, direct oxidation of methane into methanol remains as a grand challenge due to the dilemma between activation of methane and over-oxidation of methanol

  • The mass activity of Au1/black phosphorus (BP) nanosheets was 113.5 μmol gcatal−1 in water pressured with 33 bar of mixed gas (CH4:O2 = 10:1) at 90 °C under light irradiation (1.2 W)

  • Water and O2 were activated on Au1/BP nanosheets to form reactive hydroxyl groups and OH radicals under light irradiation

Read more

Summary

Introduction

As a 100% atom-economy process, direct oxidation of methane into methanol remains as a grand challenge due to the dilemma between activation of methane and over-oxidation of methanol. We achieved mild oxidation of methane into methanol over Au single atoms on black phosphorus (Au1/BP) nanosheets with the help of water under light irradiation. The mass activity of Au1/BP nanosheets was 113.5 μmol gcatal−1 in water pressured with 33 bar of mixed gas (CH4:O2 = 10:1) at 90 °C under light irradiation (1.2 W).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.