Abstract
Water in porous silica glass is a suitable system for investigating the effect of confinement on translational diffusion. These systems are important because of their relevance in catalytic and separation processes. Two factors are to be considered in the case of confined water: (1) the effects of hydrophilic and hydrophobic surfaces on interfacial water and (2) how the dynamics of the hydrogen bond network changes due to the volume of confinement. Here quasi-elastic neutron scattering experiments at room temperature on water filled controlled pore glasses with radius of 15, 24 and 32 {angstrom}, are presented and analyzed using the random-jump diffusion model. Both the average residence time and the mean jump distance increase with decreasing pore radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.