Abstract

Crop cultivation on sandy soils is susceptible to water stress. Therefore, we determined the physical-hydric attributes of a Latossolo Vermelho distrófico (Oxisol) in northwestern Paraná state, Brazil. Soil samples were collected at depth ranges of 0 to 0.2 m, 0.2 to 0.4 m, and 0.4 to 0.6 m. We measured clay, silt, sand, fine and coarse sand contents, soil particle density, soil bulk density, total porosity, microporosity, and macroporosity. We also measured soil characteristics such as saturated and unsaturated soil hydraulic conductivities, pore distribution, water retention, available water capacity, and easily available water. We also estimated soil moisture, matric potential at field capacity, and time at field capacity. Validation of associations among these soil physical-hydric attributes was performed using principal component analysis. For the sandy soils analyzed, the distributions of coarse and fine sand fractions were measured for better evaluation of the soil’s physical and hydric attributes. Higher coarse sand contents increased soil hydraulic conductivities, maximum pore diameter, and macroporosity while reducing microporosity. Fine sand content reduced conductivity and increased soil water retention in subsurface layers. Simulated sugarcane yield increased with soil water storage. These results support improving crop simulation modeling of sugarcane to support sustainable intensification in regions with sandy soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.