Abstract

Water droplet spreading and imbibition on alkaline hydrolyzed melt-blown poly(butylene terephthalate) (PBT) fiber mats is studied with both experiments and numerical simulations to elucidate the influence of surface hydrolysis. Melt-blown PBT fiber mats were exposed to a NaOH–methanol solution for controlled periods of time, resulting in surface hydrolysis of the fiber mats and the transformation of their surface wetting properties from hydrophobic to superhydrophilic. Visualization experiments reveal the influence of the hydrolysis time on the rate of droplet absorption by superhydrophilic hydrolyzed PBT fiber mats, and are used to characterize droplet spreading and imbibition. A mathematical model was employed to understand the observed spreading and imbibition behavior and the lower effective permeability seen for long hydrolysis times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.