Abstract

The role of water (thermo)dynamics is crucial in molecular recognition and self-assembly. Here, we study a prototype cavity-ligand system as a model for hydrophobic noncovalent binding. Two alternative molecular dynamics simulation resolutions are employed and the resulting structural, dynamic, and thermodynamic properties compared: first, a coarse-grained (CG) resolution based on the previously reported and validated methane-like M solute and mW water models; second, an atomic-level (AL) resolution based on the popular OPLS united atom methane and the TIP4P water models. The CG model reproduces, as a function of the cavity-ligand distance, (1) the water occupancy of the cavity, (2) the cavity-ligand potential of mean force (free energy) and its temperature dependence, and (3) some of the major qualitative features of the thermodynamic signatures (free energy, enthalpy, and entropy) for cavity-ligand association of the AL model. The limits of the CG and AL models in this context are also discussed with comparison to experimental data. Our study suggests that CG simulation with models that include the translational contribution of water and anisotropic "hydrogen-bond"-like interactions could reproduce the thermodynamics of molecular recognition and water-driven assembly in complex macromolecular systems and nanoscale processes with convenient computational time savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.