Abstract

A two-dimensional sand tank experiment was designed to explore the mechanism of water distribution and silt clogging of Yellow River water whilst replenishing groundwater in ‘open window’ reach of the piedmont river and strong seepage area consisting of a gravel and karst layer from top to bottom. Water released through the reach was divided into surface, pore and fracture karst water, of which karst water was an effective recharge from the surface water. A reasonable released water plan is necessary in recharging to avoid invalid recharge. The karst water accounted for 60–70% of the amount of water released before clogging, and this value was reduced to approximately 10–20% whilst a thin clay layer formed from suspended particles on the surface layer of the medium after clogging. The removal rate of suspended solids along vertical and lateral directions in the medium can reach over 96%. The retained amount of suspended particles was mainly distributed on the surface and upper layer region of the medium. A rubber dam can improve effective infiltration whilst promoting suspended solid deposition in the medium. The fitting degree of the numerical simulation and measured results was above 0.9, which proves the reliability of the sand tank model results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.