Abstract

Three egg-white derived peptides (DHTKE, MPDAHL, and FFGFN) were characterized with hydrophilia and water distributions. The effect of moisture exposure on their properties at 75% relative humidity for 30 h were further investigated. LF-NMR tests revealed that strong bound-water (relaxation time < 10 ms) accounted for more than 80% of total water in peptides after moisture-absorption. The absorbed water led to the pH of three peptides increase, antioxidant activities in vitro decrease, and diverse changes in their functional group vibrations, molecular hydrophobicity, and phase transformation properties. Compared to dried samples, the hydrated-DHTKE was pyrolyzed and hydrated-MPDAHL was oxidized over 160 °C, while the glass transition, melting, and crosslink temperatures of FFGFN all decreased after moisture-absorption. Moreover, the results indicated that moisture-absorption in FFGFN powder enhanced the surface-hydrophobicity of FFGFN-hydrogel and accelerated its self-organizations. This study provides a comprehensive understanding of moisture-absorption effects on peptides, with these changes potentially impacting storage recommendations and scientific interpretations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call