Abstract

AbstractReal‐time in vitro detection of glioma cells facilitates precise tumor removal. However, the fluorescent labeling of tumor cells in clinical practice is limited by many factors, including the time consumed, low recognition efficiency, and fluorescence quenching. Here, a general strategy for building perovskite quantum dot (PQD)‐based biological probes utilizing the attraction between positive and negative electric charges is reported. Poly (lactic‐co‐glycolic acid) (PLGA) is chosen for encapsulating PQDs to completely prevent their aggregation, decomposition, or release in water or oxygen. The carboxyl group of PLGA has anchoring coordination with the PQDs, which reduces the surface defects. Moreover, it causes PQD‐based nanocrystals (P‐PNCs) to be surrounded by a positively charged layer in water. Given the specific recognition of chlorotoxin for the channels, rapid imaging of glioma cells is successfully performed in 15 min using P‐PNCs modified with chlorotoxin via charge attraction. The photoluminescence quantum yield of P‐PNC probes reached 87% and remained at 93% after 30 days of dispersion in water, while maintaining a much longer fluorescence lifetime of 15 µs. Therefore, this promising biological probe will be a general nanoplatform for identifying distinct cellular compartments using different biomarker imaging methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.