Abstract

Green incident light (λ = ∼500 nm) is converted to blue light (λ = 400-450 nm) in air using bulky alkylammonium (DMDOA+), 9,10-diphenylanthracene (DPA), and Ru(dmb)32+ (dmb = 4,4'-dimethyl-2,2'-bipyridine) intercalated in a layered clay compound called "montmorillonite" [MMT-DMDOA+-DPA-Ru(dmb)32+]. The two-dimensional interstitial space has an interlayer spacing of a few nanometers. Emitter DPA is present in this interlayer spacing, having an intermolecular distance of approximately 3.0 nm at a high concentration. Sensitizer Ru(dmb)32+ is relatively dilute, having an intermolecular distance of 47 nm. The emission decay measurements and quantitative evaluation of the emission intensity demonstrate that blue light emission is induced by sequential processes, which consist of a triplet-triplet (T-T) energy transfer reaction from Ru(dmb)32+ to DPA and T-T annihilation of DPA molecules. From thermogravimetry and Fourier transform infrared spectra measurements, we observe that the cointercalated alkylammonium acts as a waterproof agent to prevent quenching of the molecules in the excited triplet states by H2O. Finally, we demonstrate a photocatalytic decomposition of Rhodamine B dissolved in H2O-containing MMT-DMDOA+-DPA-Ru(dmb)32+ and Pt-deposited WO3 photocatalyst, where wavelength of incident light (λ > 440 nm) is longer than the absorption edge of WO3 photocatalyst. The mechanism of photocatalytic decomposition is the following: (i) the incident long wavelength light is upconverted to 400-450 nm light by MMT-DMDOA+-DPA-Ru(dmb)32+, and then, (ii) WO3 photocatalyst is excited by the generated 400-450 nm light, and finally, (iii) Rhodamine B is decomposed on the Pt cocatalyst induced by the holes in a valence band of WO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call