Abstract

Design and development of photosensitizers that can efficiently convert energy of near-infrared (NIR) laser irradiation are of major importance for cancer photoassisted therapeutics. Herein, for the first time, it is demonstrated that Prussian blue (PB), a classic coordination compound, can act as a novel photosensitizer with efficient generation of singlet oxygen and excellent photothermal conversion via NIR photoirradiation-induced energy transfer. After modification with hyaluronic acid (HA), the as-prepared HA-modified PB nanocubes (HA@PB) are highly dispersible in aqueous and physiological solutions, as well as show excellent photothermal/photodynamic activities under NIR (808 nm) photoexcitation. On the basis of these features, HA@PB is used to study their in vitro and in vivo combined therapeutic effect. Owing to the CD44 ligand of HA, HA@PB have specific uptake by CD44-positive cells in vitro and can be precisely in vivo delivered to the tumor site. HA@PB as one of the synergistically photodynamic/photothermal combination nanoplatforms could achieve excellent therapeutic efficacy with targeted specificity under the guidance of dual-modality photoacoustic/infrared thermal imaging. Hence, this work is expected to pave the way for using PB-based nanomaterials as a promising multifunctional theranostic nanoplatform in biomedical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.