Abstract

Molecular Dynamics simulations of water confined in carbon nanotubes subjected to external electric fields show that water mobility strongly depends on the confining geometry, the intensity and directionality of the electric field. While fields forming angles of 0° and 45° slow down the water dynamics by increasing organization, perpendicular fields can enhance water diffusion by decreasing hydrogen bond formation. For 1.2 diameter long nanotubes, the parallel field destroys the ice-like water structure increasing mobility. These results indicate that the structure and dynamics of confined water are extremely sensitive to external fields and can be used to facilitate filtration processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.