Abstract

Predicting water demand helps decision-makers allocate regional water resources efficiently, thereby preventing water waste and shortage. The aim of this study is to predict water demand in the Beijing–Tianjin–Hebei region of North China. The explanatory variables associated with economy, community, water use, and resource availability were identified. Eleven statistical and machine learning models were built, which used data covering the 2004–2019 period. Interpolation and extrapolation scenarios were conducted to find the most suitable predictive model. The results suggest that the gradient boosting decision tree (GBDT) model demonstrates the best prediction performance in the two scenarios. The model was further tested for three other regions in China, and its robustness was validated. The water demand in 2020–2021 was provided. The results show that the identified explanatory variables were effective in water demand prediction. The machine learning models outperformed the statistical models, with the ensemble models being superior to the single predictor models. The best predictive model can also be applied to other regions to help forecast water demand to ensure sustainable water resource management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.