Abstract

AbstractThe capacity of recently-developed extreme learning machine (ELM) modelling approaches in forecasting daily urban water demand from limited data, alone or in concert with wavelet analysis (W) or bootstrap (B) methods (i.e., ELM, ELMW, ELMB), was assessed, and compared to that of equivalent traditional artificial neural network-based models (i.e., ANN, ANNW, ANNB). The urban water demand forecasting models were developed using 3-year water demand and climate datasets for the city of Calgary, Alberta, Canada. While the hybrid ELMBand ANNBmodels provided satisfactory 1-day lead-time forecasts of similar accuracy, the ANNWand ELMWmodels provided greater accuracy, with the ELMWmodel outperforming the ANNWmodel. Significant improvement in peak urban water demand prediction was only achieved with the ELMWmodel. The superiority of the ELMWmodel over both the ANNWor ANNBmodels demonstrated the significant role of wavelet transformation in improving the overall performance of the urban water demand model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.