Abstract
In this work, we newly synthesized granular composite (GASA) via hydrothermal treatment of polyaluminum chloride (PAC) and subsequently granulation pelleting with starch gel as an organic binder. The resulting composite was characterized with analytic instruments, and the feasibility of utilizing GASA as adsorbent for the removal of fluoride (F−) was tested in the batch and column experiments. The characterization results revealed that GASA possessed a spherical/porous framework consisting of aluminosilicate (i.e., ordered albite, NaAlSiO3O8). The results of final pH effect experiments and XRD/XPS analyses showed the dominant adsorption mechanisms of F− on GASA were electrostatic attraction by protonated surface Al–OH, ligand exchange between surface hydroxyl groups and F ions, and surface precipitation (i.e., cryolite formation). Based on the results of adsorption kinetics and adsorption isotherm, granulation resulted in the relatively slow kinetics of F adsorption compared to the powder type, but was preferred to retain good adsorption capacity. The regeneration possibility of GASA was also proven with the adsorption/desorption cyclic test. In the column study, 15-cm length of the GASA layer and the flow rate less than 0.85 mL min−1 were proposed to keep the satisfactory level of F in water. The experimental results offer a potential of PAC sludge-derived composite as adsorbent for the removal of F from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.