Abstract

The development in light technologies for entertainment is moving towards LED based solutions. This progress is not without problems, when more than a single LED is used. The amount of generated heat is often in the same order as in a conventional discharge lamp, but the allowable operating temperature is much lower. In order to handle the higher specific power (W/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ) inside the LED based lamps cold plates were designed and manufactured. 6 different designs were analyzed through laboratory experiments and their performances were compared. 5 designs cover; traditional straight mini channel, S-shaped mini channel, straight mini channel with swirl, threaded mini channel with swirl and 2 parallel mini channels with swirl. In the 6 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sup> design traditional mini channels were used. Based on the experimentally obtained heat transfer inside the cold plates, it was concluded that the mini channels utilizing swirling flow were much more efficient than channels with traditional flow without swirl. Similar conclusion was made for the design utilizing mini channels. Considering the pressure difference across the cold plate in addition to heat transfer properties, it turned out that two solutions were preferable; axial flow through mini channels or a s-channel. Experiments showed that the channel design utilizing swirling flows had up to 4 times the pressure loss as the mini channel/s-channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.