Abstract

AbstractOne poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High‐Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar‐Feni island chain) as well as one intra‐plate setting (western Victoria). All of the sub‐arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra‐plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction‐related signature. Material similar to the sub‐arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.