Abstract

Water resources at the basin level are affected by climate change in the form of available water scarcity and multiple droughts leading to conflicts among different water users, especially between the agricultural sector and wetland services. However, owing to the multidimensional and multi-scalar nature of water management and climate change, it is needed to integrate tools to analyze impacts and adaptation. Accordingly, the current study presents an economic-hydrological-behavioral modeling to evaluate potential effects of climate change and adaptation strategies on irrigated agriculture and to manage water resources conflicts among different water users and uses in basins. This model has an iterative framework between a farm-based multi-objectives optimization model, a water evaluating and planning model (WEAP), and an agent-based model, which can represent socio-economic, hydrologic, agronomic and behavioral systems covering all dimensions and scales related to climate change. For this purpose, the economic-hydrological-behavioral modelling was applied in a case study in the Halilrud Basin in Kerman Province, Iran. Results revealed that adoption of suitable adaptive strategies and measures could mitigate the effects of climate change and provide more water to restore the Jazmourian Wetland in this basin. Additionally, the results indicated that different forms of rigidity in the individual behavior of farmers slowed down the adaptation of the agricultural sector, so that implementation of adaptive strategies led to only 14% less water consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call