Abstract

We measured time series of the vertical particle flux at three locations in the Ross Sea, Antarctica, between January 1990 and February 1992 as part of an interdisciplinary project focusing on the accumulation and recycling of organic C and biogenic Si on a polar shelf. We estimate area‐wide annual average fluxes through the deep water column of 5 g organic C m−2 yr−l and 30 g biogenic Si m−2 yr−1, values similar to the highest annual average fluxes to the subsurface reported for other areas of the Antarctic continental shelf. Total particle and biogenic Si fluxes are highest during January and February in the southwestern Ross Sea, beneath a seasonally recurrent bloom of the diatom Fragilariopsis curta. Organic C fluxes are highest in the central Ross Sea, consistent with a surface water algal assemblage dominated by the prymnesiophyte Phaeocystis. While organic C flux decreases with depth at all three sites, the result of remineralization within the water column, biogenic opal fluxes are higher in near‐bottom traps than at 230 m at the two western Ross Sea sites. Some biogenic opal must be supplied to these deep traps via horizontal advection and possibly resuspension. Fecal pellets and large aggregates contributed between 4 and 70% of the vertical flux and settled at rates of 60 to >400 m d−1. Maximum particle fluxes occur 2 to 10 weeks after surface waters become ice free. We discuss three hypotheses to explain lags between production and settling: (1) advection from surface waters with different ice cover characteristics, (2) lags in the development of a grazing Zooplankton community, and (3) early season windinduced inhibition of primary production. Interannual variability in surface wind stress is empirically linked to variability in biogenic fluxes. Windiness and relative phasing of the annual cycles of ice cover and air temperature may be responsible for the development of different algal communities in the central versus western Ross Sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.