Abstract

The interaction of polycyclic aromatic hydrocarbons (PAHs) with water is of paramount importance in atmospheric and astrophysical contexts. We report here a combined theoretical and experimental study of corannulene-water interactions in low temperature matrices and of the matrix’s influence on the photoreactivity of corannulene with water. The theoretical study was performed using a mixed density functional based tight binding/force field approach to describe the corannulene-water clusters trapped in an argon matrix, together with Born-Oppenheimer molecular dynamics to determine finite-temperature IR spectra. The results are discussed in the light of experimental matrix isolation FTIR spectroscopic data. We show that in the solid phase, π isomers of (C20H10)(H2O)n, with n = 2 or 3, are energetically favored. These π complexes are characterized by small shifts in corannulene vibrational modes and large shifts in water bands. These π structures, particularly stable in the case of the water trimer where the water cluster is trapped “inside” the corannulene bowl, may account for the difference in photoreactivity of non-planar–compared to planar–PAHs with water. Indeed, planar PAHs such as pyrene and coronene embedded in H2O:Ar matrices form σ isomers and react with water to form alcohols and quinones under low energy UV irradiation, whereas no photoreactivity was observed for corannulene under the same experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call