Abstract
Based on the numerical simulation of water circulation in the Sea of Okhotsk in 1986 to 2015, the impact of deep cyclones on the circulation off the northeastern coast of Sakhalin is studied. The circulation in the Sea of Okhotsk is simulated with the COSMO-Ru-INMOM-CICE model configuration, where the COSMO-Ru and INMOM resolve explicitly the mesoscale atmosphere and ocean dynamics and the CICE resolves the ice cover evolution. The extreme atmospheric events associated with the intensive cyclone activity over the Sea of Okhotsk during the cold season are classified. It is found that high velocity is typical of the cyclones coming to the sea from Sakhalin, and wind speed on the periphery is higher for the cyclones coming to the Sea of Okhotsk from the south and southwest. The analysis of water circulation response off the northeastern coast of Sakhalin demonstrates that the meridional current velocity on the shelf increased by several times from the sea surface to the bottom for all types of cyclones. On the edge of the shelf, southern currents intensified in the surface and bottom layers during the passage of cyclones and at the intermediate depths during the passage of fronts. On the continental slope, southern currents intensified in the surface, intermediate, and bottom layers depending on the type of extreme events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.