Abstract

Faced with the contradictory results of two recent experimental studies [Jara-Toro et al., Angew. Chem. Int. Ed. 2017, 56, 2166 and Chao et al., Angew. Chem. Int. Ed. 2019, 58, 5013] of the possible catalytic effect of water vapor on CH3 OH + OH reaction, we report calculations that corroborate the conclusion made by Chao et al. and extend the rate constant evaluation down to 200 K. The rate constants of the CH3 OH + OH reaction catalyzed by a water molecule are computed as functions of temperature and relative humidity using high-level electronic structure and kinetics calculations. The Wuhan-Minnesota Scaling (WMS) method is used to provide accurate energetics to benchmark a density functional for direct dynamics. Both high-frequency and low-frequency anharmonicities are included. Variational and tunneling effects are treated by canonical variational transition state theory with multidimensional small-curvature tunneling. And, most significantly, we include multistructural effects in the rate constant calculations. Our calculations show that the catalytic effect of water vapor is not observable at 200-400 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.