Abstract

In this thesis, we report on our studies of water dynamics and structure in various biological environments which include: the surfaces of proteins and various oligosaccharides, the intervening space between proteins; and in the vicinity of cryoprotectant di-saccharides in the liquid and ice phases. From a theoretical perspective, we propose methodology to compute diffusivity and residence times on the surface of biomolecules. In particular our proposed algorithm to compute residence times appears to be better in dealing with poor statistics associated with the number of water molecules that remain on a surfaces for extended times. The type of linkage between monomers and the anomeric configuration all play a major role in determining the structure and dynamics of water on the surface of carbohydrates. Abstract Approved: Thesis SupervisorApproved: Thesis Supervisor Title and Department

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.