Abstract

The use of magnetic biosorbents for the remediation of heavy metals has attracted increasing attention due to their ease of separation and reusability. We developed a method for preparing superparamagnetic biosorbent materials using water-based magnetic fluids. Water-based magnetic fluid-spores (WMFSs) were obtained by combining water-based magnetic fluid (WMF) with Aspergillus niger spores at ratios of 0.6:1 (WMFS1), 0.8:1 (WMFS2), 1:1 (WMFS3), 1.2:1 (WMFS4), and 1.4:1 (WMFS5). A magnetic composite material was prepared from magnetic nanoparticles and spores in a ratio of 1:1 as a control. The adsorption efficiency and separation effect of WMFS3 were significantly better than those of the magnetic composite material. The morphology and structure of WMFS3 were characterized by performing transmission electron microscopy. The results showed that Fe3O4 magnetic particles were uniformly coated on the spore surface. The superparamagnetism of WMFS3 was tested using a vibrating sample magnetometer. At pH 2.0, the maximum adsorption capacity of WMFS3 for Cr(VI) was 105 mg/g; in the pH range of 2.0–3.0, the adsorption equilibrium time of WMFS3 was 60 min. Thus, the adsorption process conformed to the pseudo-second-order kinetic model and Freundlich isotherm. Thermodynamic studies showed that the process was spontaneous and endothermic. The adsorption mechanisms of WMF3 for Cr(VI) included electrostatic, reduction, and complexation adsorption. This biosorbent material showed excellent adsorption performance for Cr(VI) and is promising for wastewater resource applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call