Abstract
Elastic electromagnetic fibers are promising building blocks for next-generation flexible electronics. However, fabrication of elastic fibers is still difficult and usually requires organic solvents or high temperatures, restricting their widespread applications. Furthermore, the continuous production of electromagnetic fibers has not been realized previously. In this study, we propose an ionic chelation strategy to continuously produce electromagnetic fibers with a magnetic liquid metal (MLM) as the core and elastic polyurethane as the sheath in water at room temperature. Sodium alginate (SA) has been introduced to rapidly chelate with calcium ions (Ca2+) in a coagulation bath to support the continuous spinning of waterborne polyurethane (WPU) as a sheath. Meanwhile, WPU-encapsulated MLM microparticles efficiently suppress the fluid instability of MLM for continuous extrusion as the core. The resultant fiber exhibits excellent mechanical performances (tensile strength and toughness up to 32 MPa and 124 MJ/m3, respectively), high conductive stability in large deformations (high conductivity of 7.6 × 104 S/m at 580% strain), and magnetoactive properties. The applications of this electromagnetic fiber have been demonstrated by conductance-stable wires, sensors, actuation, and electromagnetic interference shielding. This work offers a water-based molecular principle for efficient and green fabrication of multifunctional fibers and will inspire a series of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.