Abstract
Time series is one of method to forecasting the data. The ACEA company has competition with opened the data in the Water Availability and uses the data to forecast. The dataset namely, Aquifers-Petrignano in Italy in water resources field has five parameters e.g. rainfall, temperature, depth to groundwater, drainage volume, and river hydrometry. In our research will be forecast the depth to groundwater data using univariate and multivariate approach of time series using Prophet Method. Prophet method is one of library which develop by Facebook team. We also use the other approach to making the data clean, or the data ready to forecast. We use handle missing data, transforming, differencing, decomposition time series, determine lag, stationary approach, and Augmented Dickey-Fuller (ADF). The all approach will be uses to make sure that the data not appearing the problem while we tried to forecast. In the other describe, we already get the results using univariate and multivariate Prophet method. The multivariate approach has presented the value of MAE 0.82 and RMSE 0.99, it’s better than while we forecast using univariate Prophet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Internasional Journal of Data Science, Engineering, and Anaylitics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.