Abstract

A characteristic feature of weak impacts is the non-monotonic response of living organisms and model biological systems to monotonically decreasing impacts. The qualitative similarity of the effects caused by the different acting factors makes one think about the common cause of the observed effects, which is water. A comprehensive analysis of the actual composition of water indicates that water under normal conditions is a multicomponent open non-equilibrium system. Nanobubbles that are always present in water play a significant role in the properties of dilute aqueous solutions. When collapsed, they can produce active oxygen and nitrogen species that have a strong effect on biological systems. Significant non-monotonic changes in electrical conductivity found in a series of sequentially diluted solutions subjected to vigorous shaking after each dilution convincingly demonstrate the presence of chemical changes in the composition of aqueous solutions explained by mechanochemical processes. Similar changes were observed in water samples prepared in the same manner with vigorous shaking and dilution without the addition of any chemical compounds. The long-term evolution of the conductivity of such solutions depends on the chemical structure of the solutes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call