Abstract

AbstractSoil temperatures, electrical conductivities, and water redistribution were measured at four field sites during a 30‐day period in which the soil was never completely thawed. The soil on each site was a silt loam with varying aspects and vegetation covers. Both upward and downward flow of water and solutes were observed. Assuming that liquid water flow in frozen soil is analogous to unsaturated liquid flow in unfrozen soil, led to a simple equation that in general agreed with the field observations. The equation requires knowledge of the soil temperatures, the solute concentrations, and two constants that characterize the soil's water release curve and saturated hydraulic conductivity.Infiltration and frost heaving are discussed with respect to this simple theory. Water in frozen soil flows from high to low temperatures and from high to low salt concentrations. Consequently, solutes in even very low salt soils are important in decreasing frost heave and increasing infiltration. The liquid flow is so closely coupled with temperature that heat flow must be considered simultaneously in any comprehensive analysis. This coupling, as expressed in the simple liquid flow equation, accounts for the effect of soil water content on frost heave rates and the effects of temperature on maximum heaving pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call