Abstract

Water and salt transfer coupled with phase change may cause serious damage to engineering structures in saline soil regions. In this study, the migration of water and salt in silty clay collected from the Qinghai-Tibet Plateau is explored experimentally and numerically during freezing and thawing processes. The results revealed that there are significant differences in the variations of liquid water content and solution concentration for different initial salt contents, due to salt crystallization and dissolution. The temperature-induced water migration is determined by the soil properties, which can be well explained by the thermodynamics of mass transfer. The amount of salt migrated upward during cooling is slightly larger than that transported downward in the warming period, implying that salt may be accumulated in the surface soil after a large number of circulations and finally result in soil salinization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.