Abstract

AbstractTo evaluate water and anion movement in an agricultural field in different frost conditions, a paired-plot field experiment was conducted at an agricultural site in northern Japan where a significant decrease in the frost depth has occurred during the past 20 years. Snow cover was removed to enhance soil freezing in one plot (treated plot), whereas natural conditions were maintained in a control plot. The maximum frost depth was 0.43 m in the treated plot and 0.11 m in the control plot, which induced substantial differences in water movement throughout the winter. A substantial amount of water moved upward before the onset of snowmelt. However, nitrate did not move markedly before the snowmelt period in either plot. The amount of snowmelt infiltration in the control plot was larger than in the treated plot. Correspondingly, the peak of nitrate content in the control plot was deeper than that in the treated plot after the snowmelt period. Soil freezing, snow accumulation and snowmelt processes were simulated reasonably well using a one-dimensional numerical model: Simultaneous Heat and Water (SHAW). Nevertheless, the model performed poorly for simulating soil thawing and soil water movement, suggesting a need for improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call