Abstract

Mantle peridotites from modern supra-subduction zones (SSZs) are important windows through which we can investigate the geodynamic processes active in the subduction factory, but they are unfortunately rare and hard to access. Most ophiolitic peridotites stem from SSZ settings and are therefore good candidates to explore the water budget and deformation in mantle wedges. We present here an integrated study of the geochemistry, deformation microstructures and water contents of olivine and orthopyroxene from the Dongqiao harzburgites, central Tibet. These peridotites are characterized by an absence of interstitial clinopyroxene, the partial replacement of orthopyroxene by olivine, the highly magnesian olivine and chromium spinel, and remarkable LREE enrichments. These features suggest that the Dongqiao harzburgites are highly depleted and have undergone a high degree (~40 %) of partial melting, followed by infiltration of and interaction with melt while they were part of the mantle wedge. Olivine and orthopyroxene show prominent plastic deformation microstructures and have developed significant crystallographic preferred orientations (CPOs), suggestive of dislocation creep deformation. Fourier transform infrared analyses show that olivine is essentially dry, while orthopyroxene contains an average water content of 70 ± 14 wt ppm. We propose that orthopyroxene largely retains its in-situ water content from the mantle source, while olivine completely loses its water during emplacement. The orthopyroxene water contents fall into the lower end of the range observed in SSZ peridotites. We consider that the high degree of partial melting and the interaction with a water-undersaturated melt contribute to the relatively lower water contents in orthopyroxene from the Dongqiao harzburgites. Based on experimentally determined hydrogen partition coefficients between olivine and orthopyroxene, the water contents of olivine in the mantle source are calculated to be 7–9 wt ppm (or 114–147 ppm H/Si), which is consistent with the observed A-type CPOs in olivine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call