Abstract

We present room temperature scanning tunneling microscopy and photoemission spectroscopy studies of water adsorption on the Zn-terminated ZnO(0001) surface. Data indicates that the initial adsorption is dissociative leaving hydroxyl groups on the surface. At low water coverage, the adsorption occurs next to the oxygen-terminated step edges, where water is believed to bind to zinc cations leaving off hydrogen atoms to under-coordinated oxygen anions. When increasing the water dose, triangular terraces grow in size and pits diminish until the surface is covered with wide irregular terraces and a large number of small pits. Higher water exposure (20 Langmuir) results in a much more irregular surface. Hydrogen, which is produced in the dissociation reaction is believed to have an important role in the changed surface structure at high exposures. The fact that adsorbed water completely changes the structure of ZnO(0001) is an important finding toward the understanding of this surface at atmospheric conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call