Abstract

Grand canonical Monte Carlo simulations have been carried out to investigate the adsorption of water from the vapor phase into the zeolite silicalite. For truly hydrophobic micropores, the simulations predict essentially no adsorption of water at low pressures, followed by rapid pore filling as pressure is increased. The effect of silanol defects in real silicalite samples was explored through simulations using “seeded” water molecules to represent hydrophilic defects. These defects promote adsorption of some water at low pressures, as molecules form hydrogen-bonded clusters around the defects. The defects also shift the pore filling to a lower pressure than in the completely hydrophobic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call