Abstract

The surface structures of ZnO surfaces and ZnO nanoparticles, with and without water, were studied with a reactive force field (FF) within the ReaxFF framework, and molecular dynamics (MD) simulations. The force field parameters were fitted to a training set of data points (energies, geometries, charges) derived from quantum-mechanical B3LYP calculations. The ReaxFF model predicts structures and reactions paths at a fraction of the computational cost of the quantum-mechanical calculations. Our simulations give the following results for the (10-10) surface. (i) The alternating H-bond pattern of Meyer et al. for one monolayer coverage is reproduced and maintained at higher temperatures. (ii) Coverages beyond one water monolayer enhances ZnO hydroxylation at the expense of ZnO hydration. (iii) This is achieved through an entirely new H-bond pattern mediated via the water molecules in the second layer above the ZnO surface. (iv) During a desorption process, the desorption rate slows significantly when two monolayers remain. Simulations of nanoparticles in water suggest that these conclusions are relevant also in the nano case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call