Abstract

Water molecules adsorbed on noble metal surfaces are of fundamental interest in surface science, in heterogeneous catalysis, and as a model for the metal/water interface. Herein, we analyze 28 water structures adsorbed on five noble metal surfaces (Cu, Ag, Au, Pd, and Pt) via density functional theory and energy decomposition analysis based on the block localized wave function technique. Structures, ranging from monomers to ice adlayers, reveal that the charge transfer from water to the surface is nearly independent from the charge transfer between the water molecules, while the polarization energies are cooperative. Dense water-water networks with small surface dipoles, such as the 39×39 unit cell [experimentally observed on Pt(111)], are favored compared to the highly ordered and popular Hup and Hdown phases. The second main result of our study is that the many-body interactions, which stabilize the water assemblies on the metal surfaces, are dominated by the polarization energies, with the charge transfer scaling with the polarization energies. Hence, if an empirical model could be found that reproduces the polarization energies, the charge transfer could be predicted as well, opening exciting perspectives for force field development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.