Abstract

Catalytic activity of lipases (from Rhizopus arrhizus, Canadida rugosa, and Pseudomonas sp. was studied in organic media, mainly diisopropyl ether. The effect of water activity (a(w)) on V(max) showed that the enzyme activity in general increased with increasing amounts of water for the three enzymes. This was shown both for esterification and hydrolysis reactions catalyzed by R. arrhizus lipase. In the esterification reaction the K(m) for the acid substrate showed a slight increase with increasing water activities. On the other hand, the K(m) for the alcohol substrate increased 10-20-fold with increasing water activity. The relative changes in K(m) were shown to be independent of the enzyme studied and solvent used. The effect was attributed to the increasing competition of water as a nucleophile for the acyl-enzyme at higher water activities. In a hydrolysis reaction the K(m) for the ester was also shown to increase as the water activity increased. The effect of water in this case was due to the fact that increased concentration of one substrate (water), and thereby increased saturation of the enzyme, will increase the apparent K(m) of the substrate (ester) to be determined. This explained why the hydrolysis rate decreased with increasing water activity at a fixed, low ester concentration. The apparent V(max) for R. arrhizus lipase was similar in four of six different solvents that were tested; exceptions were toulene and trichloroethylene, which showed lower values. The apparent K(m) for the alcohol in the solvents correlated with the hydrophobicity of the solvent, hydrophobic solvents giving lower apparent K(m). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 798-806, 1997.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.