Abstract

Linear scaling relations and Brønsted-Evans-Polanyi (BEP) relations help to elucidate trends in activation energies and adsorption energies on different metal surfaces. In this paper, Density Functional Theory (DFT) calculations available in the literature are utilized to analyze these trends and their effect on the reactivity of transition metals for the low temperature water-gas shift reaction (CO+H2O↔CO2+H2). The importance of OCO bond formation in water-gas shift is shown for metals not limited by water dissociation. In addition, the CO binding energy is shown to be an important parameter, as CO can crowd out the free sites which participate in adsorption steps, water dissociation, and carboxyl decomposition. From these results, we propose a catalyst design strategy to combine metals that adsorb O weakly, such as Au clusters or Pt nanoparticles, with supports that exhibit strong enough interactions with oxygen to be capable of easily dissociating water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.