Abstract
Xylem hydraulic properties are of great significance for plant growth and performance under drought. The ability of plants to avoid drought-induced cavitation and loss of hydraulic conductivity (K) can be characterized with vulnerability curves (VC). A VC describes the sigmoidal relationship between percentage loss of K (PLC) and xylem water potential (ψxyl). The ψ at 50% loss of conductance indicates a commonly used threshold for detrimental embolism (P50). The slope (b) represents cavitation resistance. The standard hydraulic method to determine VC's requires the measurement of water flow rate (WFR) per pressure gradient through stem segments, either by measuring outflow from the stem gravimetrically or inflow using a flow meter. In a comparative study using both measurements of inflow and outflow in asparagus stems, we found considerable disparities in the resulting shapes of VCs (P50 and b). We hypothesized that water uptake of stem tissue occurs during the pressure-driven water transit, particularly at low water potential and that differences in the initial K might result from measurements of inflow or outflow. To determine whether water uptake of stem tissue occurs during K measurements of asparagus plants, we tested for effects of ψxyl on the initial inflow and outflow K at different pressure gradients and investigated if passive water uptake can be estimated by extrapolation from the linear regression between WFR and pressure gradient based on K at two pressures. Initial K differed significantly between inlet and outlet measurements at low ψxyl, whereas maximum K did not, providing evidence of water uptake during transit through droughted stems. The resulting parameters P50 and b, and thus the shape of VCs, differed as well. The extrapolation resulted in the first estimate of passive water uptake, leading to a convergence of the VC at inlet and at outlet. We conclude that differences between in- and outflow may play a major role in K measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.