Abstract

We report real-time high temperature transmission electron microscopy observations of the growth of GaN nanowires via a self-catalytic vapor−liquid−solid (VLS) mechanism. High temperature thermal decomposition of GaN in a vacuum yields nanoscale Ga liquid droplets and gallium/nitrogen vapor species for the subsequent GaN nanowire nucleation and growth. This is the first direct observation of self-catalytic growth of nanowires via the VLS mechanism and suggests new strategies for synthesizing electronically pure single-crystalline semiconductor nanowires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.