Abstract
BackgroundThe development of high-throughput experimental technologies, such as next-generation sequencing, have led to new challenges for handling, analyzing and integrating the resulting large and diverse datasets. Bioinformatical analysis of these data commonly requires a number of mutually dependent steps applied to numerous samples for multiple conditions and replicates. To support these analyses, a number of workflow management systems (WMSs) have been developed to allow automated execution of corresponding analysis workflows. Major advantages of WMSs are the easy reproducibility of results as well as the reusability of workflows or their components.ResultsIn this article, we present Watchdog, a WMS for the automated analysis of large-scale experimental data. Main features include straightforward processing of replicate data, support for distributed computer systems, customizable error detection and manual intervention into workflow execution. Watchdog is implemented in Java and thus platform-independent and allows easy sharing of workflows and corresponding program modules. It provides a graphical user interface (GUI) for workflow construction using pre-defined modules as well as a helper script for creating new module definitions. Execution of workflows is possible using either the GUI or a command-line interface and a web-interface is provided for monitoring the execution status and intervening in case of errors. To illustrate its potentials on a real-life example, a comprehensive workflow and modules for the analysis of RNA-seq experiments were implemented and are provided with the software in addition to simple test examples.ConclusionsWatchdog is a powerful and flexible WMS for the analysis of large-scale high-throughput experiments. We believe it will greatly benefit both users with and without programming skills who want to develop and apply bioinformatical workflows with reasonable overhead. The software, example workflows and a comprehensive documentation are freely available at www.bio.ifi.lmu.de/watchdog.
Highlights
The development of high-throughput experimental technologies, such as next-generation sequencing, have led to new challenges for handling, analyzing and integrating the resulting large and diverse datasets
Automated execution of such workflows is made possible by workflow management systems (WMSs), which have a number of advantages
Example workflows For testing and getting to know the potentials of Watchdog by first-time users, two longer example workflows are provided with the software, which are documented extensively within the XML file
Summary
We present Watchdog, a WMS for the automated analysis of large-scale experimental data. Main features include straightforward processing of replicate data, support for distributed computer systems, customizable error detection and manual intervention into workflow execution. Watchdog is implemented in Java and platform-independent and allows easy sharing of workflows and corresponding program modules. It provides a graphical user interface (GUI) for workflow construction using pre-defined modules as well as a helper script for creating new module definitions. Execution of workflows is possible using either the GUI or a command-line interface and a web-interface is provided for monitoring the execution status and intervening in case of errors. To illustrate its potentials on a real-life example, a comprehensive workflow and modules for the analysis of RNA-seq experiments were implemented and are provided with the software in addition to simple test examples
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.