Abstract

Primary urban wastewater was treated in outdoor raceways using microalgae-bacteria consortia dominated by Scenedesmus almeriensis. The current study aimed at assessing the effect of operational conditions, namely, culture depth and dilution rate, on the following: (i) biomass productivity, (ii) the nutrient removal capacity and (iii) the composition of the microalgae-bacteria consortium and the presence of unwanted microorganisms. Optimum dilution rates to process large quantities of wastewater during summer and achieve high biomass productivities were 0.3–0.5 day−1. Under the optimum operational conditions, nitrogen and phosphorus removal rates were higher than 90% while removal of chemical oxygen demand was 70%. Operating at different culture depths had a striking effect on the composition of the microalgae-bacteria consortium. The relative abundance of nitrifiers increased with culture depth and was minimised at 0.05 m: larger culture depths led to enhanced nitrifying activity and therefore to nitrate production and accumulation in the system. Results demonstrate the potential of microalgae-based wastewater treatment processes and the importance of selecting suitable operational conditions to maximise both, biomass production and nutrient removal by minimising the occurrence of nitrifying bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call