Abstract

In the present study, three different artificial intelligence based non-linear models, i.e. feed forward neural network (FFNN), adaptive neuro fuzzy inference system (ANFIS), support vector machine (SVM) approaches and a classical multi-linear regression (MLR) method were applied for predicting the performance of Nicosia wastewater treatment plant (NWWTP), in terms of effluent biological oxygen demand (BODeff), chemical oxygen demand (CODeff) and total nitrogen (TNeff). The daily data were used to develop single and ensemble models to improve the prediction ability of the methods. The obtained results of single models proved that, ANFIS model provides effective outcomes in comparison with single models. In the ensemble modeling, simple averaging ensemble, weighted averaging ensemble and neural network ensemble techniques were proposed subsequently to improve the performance of the single models. The results showed that in prediction of BODeff, the ensemble models of simple averaging ensemble (SAE), weighted averaging ensemble (WAE) and neural network ensemble (NNE), increased the performance efficiency of artificial intelligence (AI) modeling up to 14%, 20% and 24% at verification phase, respectively, and less than or equal to 5% for both CODeff and TNeff in calibration phase. This shows that NNE model is more robust and reliable ensemble method for predicting the NWWTP performance due to its non-linear averaging kernel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.