Abstract

The removal and destruction of a tri-phenyl methane dye, Acid Violet 17 (AV17), from aqueous solution by adsorption and electrochemical regeneration was studied using a graphite intercalation compound (GIC) adsorbent. It was demonstrated that the adsor­bent could be regenerated by anodic oxidation of the adsorbed dye in a simple electro­chemical cell. The GIC adsorbent recovered its initial adsorption capacity after 40 to 60 min of treatment at a current density of 10 mA cm - 2 , corresponding to a charge of 12 to 18 C g - 1 of adsorbent. The charge passed is consistent with that expected for mine­rali­sation of the dye, suggesting that the dye was removed and destroyed with high charge efficiency. The energy cost of the regeneration was found to be around 120 J per g of adsorbent regenerated or 115 J per mg of the AV17 dye removed and destroyed. A model describing the process of wastewater treatment by multiple cycles of adsorption and electrochemical regeneration, based on adsorption isotherm data, has been deve­loped and validated. It was found that relatively modest improvements in the adsorption capacity of the adsorbent material could significantly improve the process performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call