Abstract

A sequencing batch bioreactor (SBR) treating municipal wastewater was photosynthetically aerated using microalgae cultivated in a photobioreactor (PBR). Symbiotic interactions and CO2/O2 exchange were established between activated sludge in the SBR and microalgae in the PBR through hydrophobic hollow fiber membranes. Photosynthetic aeration enhanced COD removal in the SBR from 52.2% (without external aeration) to 90.3%, whereas N-NH4+ and P-PO43- removal increased by 63.5% and 90.4%, respectively. The SBR performance under photosynthetic aeration was comparable to that under mechanical aeration. However, no nitrification was observed in the SBR, indicating oxygen limitation and poor growth condition for nitrifiers. In the PBR, there was a rapid increase in biomass concentration and it stabilized at 3.0 g/L after 22 days of operation. High nitrogen demand in the PBR indicated the steady flow of inorganic carbon from the SBR through the membranes. Prolonged oxygen limitation and massive sludge attachment on the membranes resulted in low suspended sludge concentration in the SBR. Microbial community analysis indicated gradual enrichment of facultative and strictly anaerobic microorganisms in the SBR. These results highlight the potential of microalgae in lowering the cost of wastewater aeration and underline the challenges in sustaining symbiotic gas exchange during long-term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.